
790 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 29, NO. 5, SEPTEMBER 1991 

~ 

//a 
/ /  Cosine-weighted l-oc - Rectangular 

h 

!2? .Pi ’ I I I 

a Transmit pulse width (psec) 
Fig. 4. Compressed pulse width p,% (a) and the degradation in compressed 
peak power A P (b) as a function of T, for several antenna beam widths. 
Notation of lines and symbols in (a) also applies to (b). 

return signal clearly affects range resolution and the peak power 
level of a compressed pulse. This means that the “effective” 
compression ratio is degraded by signal decorrelation. It is also 
found that the sidelobe shape is modified by the decorrelation (i.e.,  
sidelobe nulls entirely disappear) and that the sidelobe levels av- 
eraged over a sidelobe “cycle” (from null to null) are not affected 
by signal decorrelation. The latter fact suggests that signal decor- 
relation does not degrade the ratio of rain echo to the range sidelobe 
interference level, because the rain echo level is approximately 
proportional to the product of compressed pulse width and the com- 
pressed peak power which is found to be almost constant regardless 
of signal decorrelation from the numerical calculation. 

The compressed pulse width (p,,,; -3-dB width) and the decrease 
in compressed peak power ( A P  in decibel) obtained from each cal- 
culated waveform are shown in Fig. 4 as a function of transmit 
pulse width Tw. As a guideline of the limit of T, that gives tolerable 
degradation in pulse compression performance, we consider T,, 
values at which p,,, and A P  are degraded by I O  and 20% (in the 
case of A P ,  0.45 and 0.97 dB). Those T, values are estimated from 
second-order polynomial regressions of the curves shown in Fig. 
4, and the following results are obtained: 

1) To keep the degradations in pw. and A P  within 10% (0.45 
dB), Tw should be less than 0.5670.1 for the rectangular pulse, and 
0.8670.1 for the cosine pulse; 

2) To keep the degradations in pn, and A P  within 20% (0.97 
dB), Tw should be less than about O . ~ T ~ , ,  for the rectangular pulse, 
and about 1.370,, for the cosine pulse. 

It should be noted that the results shown in Figs. 2-4 are based 
on the calculation using (l4), which neglects the delay time differ- 
ence between the center and the edge of the FOV. If this time dif- 
ference cannot be omitted, the compressed waveform may not be 
symmetrical with respect to the mainlobe. In general, the trailing 
sidelobe is more affected by the signal decorrelation than is the 
leading sidelobe, because the return from the edge of the FOV de- 
correlates more quickly than that from the center of the FOV. In 
such cases, the reuslts shown here should be understood as an “av- 
erage” of the leading and the trailing sidelobes. It has been found 
from the rigorous calculation of (12) that the sidelobes for antenna 
beamwidths up to 0.72” are approximately symmetric with respect 
to the mainlobe peak. 

V. SUMMARY 
We have considered an inherent problem in pulse-compression 

radar systems used for nadir-looking spaceborne radars. As antic- 
ipated, if the transmitted pulse width (Tw) becomes longer than the 
signal decorrelation time, the effective compression ratio (range 
resolution and compressed peak power) is significantly degraded; 
however, “absolute” sidelobe levels are approximately constant. 
The effects of signal decorrelation somewhat depend on the partic- 
ular waveform. Generally speaking, the stronger the time or fre- 
quency domain weighting to obtain low range sidelobe levels, the 
less the effects of signal decorrelation. Judging from the results 
shown above, however, we can conclude that Tw should be shorter 
than about half the 70.1 (the time for p (7) to decrease to 0.1) so that 
the signal decorrelation effects are negligible. 
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Maximum-Likelihood Blind Deconvolution: 
Non-White Bernoulli-Gaussian Case 
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Abstract-Todoeschuck and Jensen [l], [2] recently reported that 
some reflectivity sequences p ( k )  calculated from sonic logs are not white 
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and have a power spectral density approximately proportional to fre- 
quency, called a Joseph spectrum. The well-known MLD algorithms 
[7]-[13] can simultaneously provide estimates of p(k) ,  source wavelet 
which need not be minimum-phase, and statistical parameters. Al- 
though these MLD algorithms work well, they are based on the white 
Bernoulli-Gaussian (B-G) model for p ( k ) .  In this paper, assuming that 
spectrum measurements of ~ ( k )  are available, we propose a ML algo- 
rithm for blind deconvolution as p(k)  is nonwhite with a general spec- 
trum meanwhile the spectrum of the obtained maximum-likelihood es- 
timate bML(k) is consistent with the measured spectrum. 

I .  INTRODUCTION 
The estimation of the desired signal p(k)  from noisy measure- 

ments z(k) ,  k = I ,  2 ,  . * * , N, obtained from the following con- 
volutional model 

I 

z(k) = p(k) * u(k) + n(k)  = C ~ i ( i ) p ( k  - i )  + n(k)  (1) 

where v(k)  is the impulse response of a linear time-invariant system 
and n(k)  is the measurement noise, is a deconvolution problem. 
This problem can be found in areas such as seismology, astronomy, 
speech processing, biomedical ultrasonic imaging, and communi- 
cations. Conventionally, the whiteness assumption about p ( k )  is 
used in seismic deconvolution such as predictive deconvolution [3]- 
[4], minimum-variance deconvolution (MVD) [5]-[6] and maxi- 
mum-likelihood deconvolution (MLD) [7]-[13]. 

Todoeschuck and Jensen [ I ]  recently reported that some reflec- 
tivity sequences p ( k ) ,  calculated from sonic logs are not white and 
have a power spectral density approximately proportional to fre- 
quency, called a Joseph spectrum. In view of this fact, Chi [14], 
[I51 modeled p(k ) ,  whose spectrum is Joseph, as the output of a 
minimum-phase coloring filter v , ( k )  = 6 ( k )  - 0.516(k - 1) that is 
excited by white Bernoulli-Gaussian (B-G) process ( ( k )  as follows: 

( 2 )  

, = o  

p(k) = ((4 * u, (k)  

where 

E @ )  = r (k)  . q(k)  (3) 

r ( k )  is zero-mean white Gaussian with variance U: and q(k )  is Ber- 
noulli for which 

(4) 

He then showed how to obtain minimum-variance estimate bMv(k) 
and maximum-likelihood estimate fiML(k) of p ( k )  assuming that col- 
oring filter v l (k) ,  source wavelet @), and all statistical parameters 
(us, X and variance U: of white noise n(k) )  are given in advance. 

In practice, not only p ( k )  but also u(k) and statistical parameters 
must be estimated from data z (k ) .  It is so called blind deconvolu- 
tion. The well-known MLD algorithms [7]-[9], which are based 
on the white B-G model for p(k ) ,  can simultaneously provide es- 
timates of p ( k ) ,  v(k) which need not be minimum-phase, and sta- 
tistical parameters. However, maximum-likelihood blind decon- 
volution for the case that p(k) has a general spectrum is still an 
unknown problem. On the other hand, the spectrum of p(k )  cal- 
culated from sonic logs, may be available in the meantime. It is 
clearly better [ 1 1  to deconvolve seismograms meanwhile taking the 
spectrum of p(k )  into account if it has been calculated from sonic 

In this paper, we propose a ML algorithm for blind deconvolu- 
tion as p(k )  is nonwhite with a general spectrum meanwhile the 
spectrum of M L  estimate fiML(k) is consistent with the measured 
spectrum. In Section 11, we present the MLD of nonwhite B-G sig- 

logs. 
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nals. Then, we show some simulation results to demonstrate the 
good performance of the proposed M L  blind deconvolution algo- 
rithm for nonwhite B-G signals in Section 111. Finally, we draw 
some conclusions. 

11. MLD OF NON-WHITE B-G SIGNALS 

The proposed MLD algorithm is, again, based on the model (2) 
and (3) for p(k )  where uI(k) ,  now, is the impulse response of an 
unknown causal stable linear time-invariant system and it can be 
nonminimum-phase. Assume that V, ( z )  (z-transform of v , ( k ) )  and 
V ( z )  are rational functions and that pole-zero cancellation does not 
occur in Vl(z) . V ( z ) ,  denoted V2(z), which is the z-transform of 
the combined wavelet v,(k) where 

( 5 )  

The algorithm to be presented consists of two parts. One part in- 
cludes estimation of ( ( k )  and ~ ( k )  from z ( k ) .  The other part in- 
cludes estimation of p ( k )  and uI(k)  from the estimates gML(k) and 
O,(k), and the measured spectrum of p(k) .  Next, let us present the 
former and then the latter, respectively. 

A. Estimation of E (k )  and u2 (k) 

Zh(k) = Z’l(k) * z(k). 

From ( I )  and (2) we have 

(6) z (k )  = ( ( k )  * U&) + n(k) .  

Note, from (6), that z (k )  can be viewed as the output of a linear 
causal stable time-invariant system U&) with input being a white 
B-G signal E@). The well-known MLD algorithm [9], which is 
based on the maximization of the following likelihood function 

(7) 

wherez = M I ) ,  z ( 2 ) ,  . . . , z ( N ) ) ’ ,  _r = ( r ( l ) ,  r ( 2 ) ,  . . . , r ( N ) ) ’ ,  
q = ( q ( l ) ,  q ( 2 ) ,  - * * , q ( N ) ) ’  and e contains all the coefficients of 
Vz(z), includes estimation of I ) & ) ,  detection of q(k ) ,  estimation of 
r ( k )  and estimation of statistical parameters A, uf. The parameter 
U: is never estimated due to a scale factor existing between U&) 
and ( ( k ) .  Their MLD algorithm has been successfully used to pro- 
cess real seismic data. Surely, we can obtain M L  estimates, v&) 
and $ M L ( ~ )  = fMML(k)  . qML(k)  by use of their MLD algorithm. The 
reader can refer to [9] for details of their MLD algorithm. 

B. Estimation of p(k)  and z l l  (k)  

S { L >  4 ,  e ,  1, u,?llzJ = P(I* _r, gle, A, U : ,  U 3  

It is well known that the ML estimate of p(k )  can be computed 

b M L ( I 0  = i M L ( k )  * (8) 

by 

which is, however, not computable since vl(k) is not known. In 
other words, the MLD algorithm is not able to provide bML(k) un- 
less U , @ )  can be estimated via some extra information (such as 
spectrum or  autocorrelation function of p(k) calculated from sonic 
logs) other than dataz(k). Next, let us present the algorithm for 
finding the optimum VI(z) from v2(z) such that the associated nor- 
malized autocorrelation function (see (9) below) of bML(k) is con- 
sistent with the measured normalized autocorrelation function of 
p(k) under the constraint that Q2(z) = t l ( z )  

Let r,,(k) denote the normalized autocorrelation function of p ( k ) ,  
defined as 

v(z ) .  

N 

c P ( i ) P ( i  + k )  

c P 2 ( i )  

I =  I 
r,(k) = N 

, = I  

(9) 
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Note that r,,(O) = 1 for any p(k).  Assume that FJk) is the measured 
normalized autocorrelation function of p(k).  The optimum v,(k) is 
the one such that the following sum of error squares: 

M 

J(tl(Z)) = c IPJk) - ?,,@)I2 (10) 

is minimum where M denotes the length of FJk) and PJk) is com- 
puted by (8) and (9) with v l ( k )  = Ol(k). 

k =  I 

We express the rational transfer function q2(z) as 

where is a nonzero constant 

P(Z) = i? P,(Z) * P,(Z) (12) 
I =  I 

Q(z) = ,=I 6 Q,M * ,=$+ I Q,(z) (13) 

1 - p,z- l ,  1 I i 5 ml and realp, 

P,(z) = (1 - p,z-I)(l - p,*z-',, 

m ,  + 1 5 i I m2 and complex p ,  

(14) 

1 - q,z- ' ,  

(1 - qlZ-I)(l - q:z-'), 

1 I i 5 n, and real q, 

r 
r Q,W = 

nl + 1 5 i 5 n2 and complex q1 

(15) 

ml and nl denote the number of real roots of P(z) and Q(z), re- 
spectively, (m, - m l )  and (n2 - n , )  denote the number of pairs of 
complex conjugate roots of P(z) and Q(z), respectively. Since t l ( z )  
is a factor of P2(z) due to t2(z)  = Pl(z) . V(z) ,  there exist 2L pos- 
sible Pl(z)'s, where L = m2 + n2.  Therefore, the computational 
load of searching for the optimum Pl(z) from 2L possible candidates 
could be heavy when 2L is large. 

In view of the possible heavy computational load, we propose 
an iterative fast search algorithm, which is shown in Fig. 1, for the 
desired Pl(z). Let b, ( k )  be a binary sequence for which either b,(k) 
= 0 or b,(k) = I ,  for all 1 5 k I L. Assume that at the 
(i - 1)th iteration we ended up with tl,, - I(z) where 

8 [QA(z)lh' I(') 
k =  I 

V , , , - d z ) =  L (16) 

For the ith iteration, the algorithm computes L objective functions 
J(V',(z)), j = 1, 2 ,  . - * , L,  where V',(z) is defined as 

where 

bi- l(k), k f j  

1 - b , - l ( k ) ,  k = j .  
bj(k) = 

UPDATE 
bi(k) = b;(k) 

GJZ) = V,'(Z) 

J i  = J (  v:(z)) 4 i = i t l  

Fig. I .  Fast search algorithm for P,(z ) .  

Note, from (16) through (18), that VJI(z) differs from PI, , -  I(z) only 
in either a factor Q'(z) E {Q,(z), 1 I k I n 2 }  for 1 I j I n2 in 
the numerator or a factor P'(z) E {Pk(z), 1 5 k 5 mz} for n2 + 1 
I j I L in the denominator. Then we search for the minimum 
over {J(VJl(z)), 1 I j 5 L} ,  denoted by J(V',(z)), i.e., 

J(V',(z)) = min {J(VJI(z))}. (19) 

(20) 

Finally, b,(k) ,  t l . , ( z )  and J ,  are updated as follows: 

b, (4 = b: (4 
Vl.,(Z) = V(Z) (21) 

J ,  = J(V',(Z)). (22) 

When J ,  > J ,  - I the algorithm converges, we obtain Pl(z) = 
PI,, - I(z) and t(z) = t2 (z) /  Pl(z). The fact that the algorithm is 
fast is based on: (1) the objective function J is guaranteed to de- 
crease for every iteration; and (2) the algorithm converges in less 
than or equal to L iterations. 

As a final remark, a scale factor associated with t l (z)  and t (z)  
is not resolvable since for any nonzero constant a, (a P,(z), q(z) /a)  
and (Pl(z), v(z)) lead to iiML(k)'s with the same normalized auto- 
correlation function. Next, we present some simulation results to 
demonstrate that the proposed MLD algorithm works well. 

111. COMPUTER SIMULATION 

For our simulation a pseudo white B-G signal ( ( k )  was generated 

(23) 

which is maximum-phase, to obtain true p ( k )  which has a Joseph 

and then convolved with 

~ l ( k )  = 6(k) - 1.96606(k - 1) 
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Fig. 2. (a) The combined source wavelet rj2(k)  (solid line) and estimate 
&(k) (dashed line); (b) E ( k )  (circles) and EMl.(k) (bars); (c) Z J , ( ~ )  (solid line) 
and estimate D,(k) (dashed line); (d) source wavelet v(k)  (solid line) and 
estimate D(k)  (dashed line); (e) normalized autocorrelation functions f F ( k )  
(dashed line) and i , ,(k) (solid line); and ( f )  p(k)  (top part) and cMl.(k) (bot- 
tom part). 

spectrum, The simulated ~ ( k ) ,  k = 1, 2, . . . , N = 300, were 
obtained by convolving p ( k )  with the nonminimum-phase source 
wavelet v(k), whose transfer function is given by 

On the other hand, the simulated normalized autocorrelation func- 
tion f,,(k) was calculated by (9) with y(k) = b(k) where F(k) was 
obtained by adding white Gaussian noise to p ( k )  with SNR = 15. 
The true V2(z )  (= V, ( z )  . V(z))  is, therefore, a fourth-order rational 
function as follows: 1 - 2 . 5 6 5 4 ~ - ’  + 2 . 1 9 9 6 ~ - ~  

’(‘) = 1 - 2 . 5 8 6 0 - ’  + 2.4890z-’ - 1 . 0 3 3 ~ - ~  + 0 . 1 6 8 0 ~ - ~  
1 - 4.53142-’ + 7.24312-’ - 4 .3244~- ’  (24) 

to obtain the noise-free data and then adding white Gaussian noise 
v2(z) = 1 - 2 . 5 8 6 0 ~ - ’  + 2.4890z-’ - 1 . 0 3 3 ~ - ~  + 0 . 1 6 8 0 ~ - ~ ’  

to the noise-free data with signal-to-noise ratio (SNR) equal to 15. (25) 
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The order of v2(z) used was equal to 4 .  We then obtained iML(k)  
and v2(z) using Chi, Mendel, a,"d Hampspn's MLD algorithm [9]. 
Finally, we obtained PML(k), VI(z) and V(z)  by the algorithm de- 
scribed in Section I1 with the parameter M = 9 (length of FJk)). 

The simulation results are shown in Fig. 2. The obtained v2(z) 
is given as follows: 

0.8039 - 4 . 1 0 0 8 ~ - '  + 6 . 8 3 0 5 ~ - ~  - 4 . 1 4 8 9 ~ - ~  
V2(z) = 1 - 2.62972-' + 2.59082-? - 1.11362-' + 0 . 1 8 8 5 ~ - ~ '  

(26) 
The combined source wavelet u2(k) (solid line) and estimate 02(k) 
(dashed line) are shown in Fig. 2(a) from which one can see that 
O,(k) is a good approximation to u2(k) ,  although the coefficients of 

v2(z) are different from those of V2(z). iML(k)  (bars) and E(k) (cir- 
cles) are depicted in Fig. 2(b), where the former is also a good 
approximation to the latter. v l (k)  (solid line) and estimate Ol(k) 
(dashed line) are shown in Fig. 2(c), from which one can see that 
O,(k)  is also maximum-phase. From Fig. 2(d), we see that the es- 
timate O(k) (dashed line) is also a good approximation to the 
wavelet u(k) (solid line). Note that the scale factor associated with 
Ol(k) and O(k) was not existent due to O,(O)  = v,(O) = I for this 
case. The normalized autocorrelation function ?,,(k) (dashed line) 
of pML(k) and FJk) (solid line) are shown in Fig. 2(e) which implies 
the consistency of spectrum of bML(k) with that of j l (k) .  Finally, 
true p ( k )  (top part) and bML(k) (bottom part) are shown in Fig. 2(f) 
from which one can observe that bML(k) is quite close to p(k).  
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The true order for v 2 ( z )  was used in the previous simulation. We 
also performed the same simulation with the order of v2(z) equal 
to 5 which is one order higher than that of Vz(z) .  Very similar re- 
sults were obtained and thus are omitted here. These simulations 
also demonstrated that the proposed MLD algorithm performs well 
as long as the order of v2(z) used is large enough. 

IV. CONCLUSIONS 

In this paper, we have presented a MLD algorithm for estimating 
nonwhite B-G signals p(k) ,  which were distorted by a linear time- 
invariant system v ( k )  meanwhile taking into account of the mea- 
sured spectrum of p ( k )  such as that obtained from sonic logs. With- 
out the information of spectrum of p(k ) ,  the MLD algorithm can 
only provide the ML estimate i M L ( k )  of white B-G signal ( ( k ) ,  
which could be very different from p(k)  = ( ( k )  * U , @ )  (see (2)) if 
the normalized autocorrelation function of p(k)  is broad (i.e.,  away 
from &k)) .  The proposed MLD algorithm can recover both the 
phase of z ~ , ( k )  and that of u(k )  as long as the spectrum of p(k )  is 
known in advance. We also presented some simulation results 
which supported the proposed MLD algorithm. 

Remark that the proposed algorithm is based on the assumption 
that pole-zero cancellation does not occur in V z ( z )  = V , ( z )  . V ( z ) .  
However, the case that pole-zero cancellation happens, was not 
considered in this paper. We leave the problem of how to extract 
u , ( k )  for this rare case in the future research. 

ACKNOWLEDGMENT 

The research described in this paper was performed at the De- 
partment of Electrical Engineering, National Tsing Hua Univer- 
sity, Hsinchu, Taiwan, Republic of China. 

REFERENCES 

[I] J. P. Todoeschuck and 0. G .  Jensen, “Joseph geology and seismic 
deconvolution,” Geophysics, vol. 53. no. I I ,  pp. 1410-1414, Nov. 
1988. 

[2] J. P. Todoeschuck, 0. G. Jensen, and S.  Labonte, ”Gaussian scaling 
noise model of seismic reflection sequences: Evidence from well 
logs,” Geophysics, vol. 55 ,  no. 4. pp. 480-484, April 1990. 

131 E. A. Robinson, “Predictive decomposition of seismic traces.” Geo- 
physics, vol. 22, pp. 767-178, 1957. 

141 E. A. Robinson and S. Treitel. Geophysical Signul Analysis. En- 
glewood Cliffs, NJ: Prentice Hall. 1980. 

[SI J. M. Mendel, “White noise estimators for seismic data processing 
in oil exploration,” IEEE Truns. Auto. Control, vol. AC-22. pp. 694- 
706, 1977. 

161 J. M. Mendel, “Minimum-variance deconvolution.” IEEE Trans. 
Geosci. RemoteSensing, vol. GE-19, no. 3. pp. 161-171, July 1981. 

171 J. Kormylo and J. M. Mendel. “Maximum-likelihood deconvolu- 
tion,” IEEE Trans. Geosci. Remote Sensing, vol. GE-21, pp. 72-82, 
1983. 

181 J. M. Mendel, Optimal Seismic Deconvolution: An Estimation-Based 
Approach. 

191 C.-Y. Chi, J. M. Mendel, and D. Hampson, “A computationally- 
fast approach to maximum-likelihood deconvolution.” Geophysics, 
vol. 49. pp. 550-565. May 1984. 

[IO] J. Goutsias and 1. M. Mendel. “Maximum-likelihood deconvolution: 
An optimization theory perspective,” Geophysics. vol. 51, no. 6, pp. 

[ I  I ]  G .  B. Giannakis and J. M. Mendel, “Entropy interpretation of max- 
imum-likelihood deconvolution,” Geophysics, vol. 52. no. 12, pp. 

I21 J. M. Mendel. Maximurn-Likelihood Decon\dution: A Journey into 
New York: Springer-Verlag, 1990. 

1131 C-Y. Chi and W-T. Chen, “An adaptive maximum-likelihood decon- 

New York: Academic Press. 1983. 

1206-1220, 1986. 

I62 I -  1630, 1987. 

Model-Bused Signal Processing. 

volution algorithm,” to appear in Signul Processing. 

C-Y. Chi. “A robustness test for the MVD filter and the MLD al- 
gorithm.” IEEE Trans. Geosci. r i n d  Remote Sensing. vol. 29, no. 2, 
pp. 340-342, March 1991. 
C-Y. Chi, “Minimum-variance deconvolution and maximum-likeli- 
hood deconvolution for non-white Bernoulli-Gaussian processes with 
a Joseph spectrum,” to appear in IEEE Truns. Signul Processing. 

Numerical Simulation of Subsurface Radar for 
Detecting Buried Pipes 

Ce Liu and Liang C.  Shen 

Abstract-A subsurface radar for the detection of dielectric or metal 
pipes buried in the ground is investigated numerically. The two- 
dimensional transmission line matrix (TLM) method is used to obtain 
images of buried pipes illuminated by electromagnetic pulses generated 
by a ground-penetrating radar. 

I. INTRODUCTION 

Several subsurface sensing radars have been developed recently 
for the purpose of detecting underground objects such as pipes, 
buried wastes, and fractures in rock formations [1]-[6]. These ra- 
dars use synthetic RF pulses [ I ] ,  mono-cycle pulses [3], and reg- 
ular electromagnetic impulses [2], [ 5 ] ,  [6]. A physical scale model 
system for studying these radars is presented in [7]. A study of the 
propagation of electromagnetic pulses in the dissipative and dis- 
persive earth is given in [8], but the study does not include any 
underground targets. A theoretical estimate of the propagation ve- 
locity and depth of the object is given in [9]. The theory is based 
on Fresnel or Fraunhoffer approximation. The objective of the 
present study is to numerically simulate the electromagnetic-pulse 
radar based on rigorous Maxwell’s equations. The simulation is 
aimed at improving the design of the radar and the quality of the 
images it produces. 

Simulation of the electromagnetic-pulse ground-penetrating ra- 
dar is accomplished by using the transmission-line-matrix (TLM) 
method. This method has been used widely in solving microwave 
problems which involve finite regions bounded by conductors, such 
as waveguides or resonant cavities. A summary paper on TLM 
technique is given by Hoefer [ 101. The TLM method has been suc- 
cessfully used in solving a well-logging problem involving open 
regions [ 1 11. It has been shown that by judiciously choosing arti- 
ficial boundaries and by applying the so-called absorbing boundary 
condition, the TLM technique can also solve many open-boundary 
problems in the time domain. While the well-logging problem stud- 
ied in [ 1 I] is a two-dimensional one in the cylindrical coordinate 
system, the present problem is two-dimensional in the rectangular 
coordinate system. 

11. Formulation 

The geometry of the present two-dimensional boundary-value 
problem is shown in Fig. 1 .  The transmitting and receiving anten- 
nas are located on the surface of the ground. The transmitting an- 
tenna emits a pulsed electromagnetic wave into the ground in which 
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